25 research outputs found

    Spectral Embedding Norm: Looking Deep into the Spectrum of the Graph Laplacian

    Full text link
    The extraction of clusters from a dataset which includes multiple clusters and a significant background component is a non-trivial task of practical importance. In image analysis this manifests for example in anomaly detection and target detection. The traditional spectral clustering algorithm, which relies on the leading KK eigenvectors to detect KK clusters, fails in such cases. In this paper we propose the {\it spectral embedding norm} which sums the squared values of the first II normalized eigenvectors, where II can be significantly larger than KK. We prove that this quantity can be used to separate clusters from the background in unbalanced settings, including extreme cases such as outlier detection. The performance of the algorithm is not sensitive to the choice of II, and we demonstrate its application on synthetic and real-world remote sensing and neuroimaging datasets

    Implicit Graphon Neural Representation

    Full text link
    Graphons are general and powerful models for generating graphs of varying size. In this paper, we propose to directly model graphons using neural networks, obtaining Implicit Graphon Neural Representation (IGNR). Existing work in modeling and reconstructing graphons often approximates a target graphon by a fixed resolution piece-wise constant representation. Our IGNR has the benefit that it can represent graphons up to arbitrary resolutions, and enables natural and efficient generation of arbitrary sized graphs with desired structure once the model is learned. Furthermore, we allow the input graph data to be unaligned and have different sizes by leveraging the Gromov-Wasserstein distance. We first demonstrate the effectiveness of our model by showing its superior performance on a graphon learning task. We then propose an extension of IGNR that can be incorporated into an auto-encoder framework, and demonstrate its good performance under a more general setting of graphon learning. We also show that our model is suitable for graph representation learning and graph generation.Comment: 3 figure

    Evaluating Disentanglement in Generative Models Without Knowledge of Latent Factors

    Full text link
    Probabilistic generative models provide a flexible and systematic framework for learning the underlying geometry of data. However, model selection in this setting is challenging, particularly when selecting for ill-defined qualities such as disentanglement or interpretability. In this work, we address this gap by introducing a method for ranking generative models based on the training dynamics exhibited during learning. Inspired by recent theoretical characterizations of disentanglement, our method does not require supervision of the underlying latent factors. We evaluate our approach by demonstrating the need for disentanglement metrics which do not require labels\textemdash the underlying generative factors. We additionally demonstrate that our approach correlates with baseline supervised methods for evaluating disentanglement. Finally, we show that our method can be used as an unsupervised indicator for downstream performance on reinforcement learning and fairness-classification problems

    The Numerical Stability of Hyperbolic Representation Learning

    Full text link
    Given the exponential growth of the volume of the ball w.r.t. its radius, the hyperbolic space is capable of embedding trees with arbitrarily small distortion and hence has received wide attention for representing hierarchical datasets. However, this exponential growth property comes at a price of numerical instability such that training hyperbolic learning models will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic. In this work, we carefully analyze the limitation of two popular models for the hyperbolic space, namely, the Poincar\'e ball and the Lorentz model. We first show that, under the 64 bit arithmetic system, the Poincar\'e ball has a relatively larger capacity than the Lorentz model for correctly representing points. Then, we theoretically validate the superiority of the Lorentz model over the Poincar\'e ball from the perspective of optimization. Given the numerical limitations of both models, we identify one Euclidean parametrization of the hyperbolic space which can alleviate these limitations. We further extend this Euclidean parametrization to hyperbolic hyperplanes and exhibits its ability in improving the performance of hyperbolic SVM
    corecore